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Abstract. Linear coupled buoyancy and thermoupillary instabilities (the 86nard-Marangoni 
problem) in a Maxwell viscoeiastic Ruid layer heated from below are studied. As the principle of 
exchange of stability is no longer valid, both stationary and oscillatory solutions are considered. 
It is shown that beyond a critical value of the relaxation time, the instability apparing in a 
fluid layer with a free upper surface subjecl to a temperahlre-dependent surface tension akes the 
form of oscillations. The critical temperature difference between the lower and upper surfaces is 
determined as a function of the Prandtl number and the relaxation time. The instability thresholds 
are graphically represented on 'Nield's diagrams' where the critical Marangoni number is given 
vents the Rayleigh number. At high Prandll numbers discontinuities in the solutions are 
displayed for some specific values of the Ruid layer thickness. It is also observed that for 
some range of variation of the parameten. thermocapiilarity has an unusual stabiiiziig effect. 

1. Introdaction 

The problem of thermoconvection in Newtonian fluids has been studied for many years; 
fairly complete linear and non-linear results are now available for both gravity-(Rayleigh- 
Btnard) and thermocapillarity-(Marangoni) driven convection. Classical references about 
this subject are listed as [1]-[16]. 

However it is nowadays well known [17-20] that a wide class of real fluids such as 
polymeric solutions are actually viscoelastic. Thennoconvection in polymeric liquids has 
drawn much less interest than that in Newtonian fluids. Except for rare works [21,22], the 
analyses are only linear [23-251. Moreover in most cases, the single motor of instability 
taken into account is gravity. To our knowledge, thermocapillary instability in a non- 
Newtonian fluid has only been studied by Getachew and Rosenblat [26] and Lebon and 
Cloot [27]. 

The purpose of the present paper is to study the onset of convection in a horizontal thin 
layer of a viscoelastic fluid at rest and heated from below under the simultaneous actions 
of gravity and thennocapillarity (the B6nard-Marangoni problem). The analysis is linear 
and must thus be regarded as a first step towards a more general non-linear approach. The 
rheology of the fluid is assumed to be described by the Maxwell viscoelastic model. 

The paper will be organized as follows. In section 2, the governing equations are briefly 
derived. Section 3 is devoted to the numerical method used to solve the equations. Results 
are discussed in section 4 and final conclusions are drawn in section 5. 
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2. The mathematical formulation 

Consider a viscoelastic incompressible fluid layer of infinite horizontal extent and thickness 
d.  The layer is confined between a lower perfectly heat conducting boundary and an upper 
free surface adiabatically isolated. The surface tension is assumed to depend linearly on 
the temperature T :  
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6 = b - Y ( T  - To) (2.1) 

where 60 is the surface tension at the reference temperature G, and y is assumed to be 
a constant which is positive for most current liquids and is of the order of magnitude of 
10" Pa. 

The constitutive equation giving the dependence of the viscous stress tensor r with 
respect to the velocity gradient tensor Vu is the well known Maxwell equation 117-201: 

T + 11a7/at = p [ V u  + (VUYI (2.2) 

where A I  is the relaxation time and p is the dynamic viscosity; p and .\I are positive 
quantities [I71 with 1, ranging from IO-'' s for water to 10' s for some rheological fluids 

Lengths are 
scaled by the thickness d of the layer; the velocity U, time t .  pressure p ,  stress tensor 
r, temperature differences and surface tension are scaled by K / d ,  d Z / K ,  K p / d 2 ,  K p / d 2 ,  
pd and $0 respectively; K is the heat diffusivity while ,6 = AT/d is the modulus of the 
temperature gradient between the bottom and the top of the layer; p is positive for a fluid 
layer heated from below. The following dimensionless numbers are also introduced: 

[IS]. 
For convenience, the variables are expressed in dimensionless form. 

where Pr is the Prandtl number, Ra the Rayleigh number, Ma the Marangoni number, po the 
density at temperature To, g the gravity acceleration, 01 is the thermal expansion coefficient 
(considered positive here) and 1 is the dimensionless relaxation time Ai. As y is usually 
larger than zero, Ma is supposed to be positive. 

Within Boussinesq's approximation, the governing dimensionless balance equations of 
mass, momentum and energy are 

v . u = o  

a u l a t  + U . Vu = p r ( - V p  + Rae, + v .  T )  

aT/a t  + U .  V T  = V 2 T  

where e, is the vertical unit vector whose direction is opposite to gravity. 
If the plane z = 0 is located at half height of the fluid layer, the solution describing pure 

conduction is given by uC = 0 and T c  = T~,u., -p(z+ 4). Using (2.2) and (2.7)-(2.9) it is 
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an easy task to eliminate the pressure p? the horizontal components U and v of the velocity 
and the viscous stress tensor r ;  one obtains in this way the following linear equations for 
the perturbations with respect to the conductive solution: 

[v2 - (1 + ~ a / a r ) ~ r - l a / a t ] v ~ ~  = -(I + Aa/at)Rav:e 

ae/at - w = v28 

(2.10) 

(2.1 1) 

where the quantity 8 is defined by 8 = T - TC, w is the vertical velocity component and 
Vb is the horizontal nabla operator (Vi = az/ax2 + az/ay2). 

The corresponding boundary conditions are 

(2.12) 

w = o D ~ W  - Ma(1 + ha/at)v;e = o DO = o at z = $ (2.13a-c) 

where D stands for d/dz. The first two equations in (2.12) express the no-slip condition on a 
rigid surface while the third one expresses the fixed temperature condition. Equation (2.13~) 
takes account of the non-deformability of the surface, (2.13b) is the Marangoni condition 
expressing that the shear effect at the upper surface is balanced by the gradient of surface 
tension and finally (2.13~) is the adiabaticity condition. 

I z = -- w = D w = O = O  at 2 

According to the normal mode technique, we seek solutions of the form 

(w,8)  = [ W ( z ) ,  O(z)Jexp[i(k,x +k,y) +ut ]  (2.14) 

where k, and ky are the x and y components of the disturbance wave vector k; 6 is the 
complex stability parameter 

o = u r + i o  (2.15) 

where ur measures the growth rate of the disturbance and o its frequency. Substitution of 
(2.15) in (2.1&12) results in the following differential equations and boundary conditions 
for the disturbance amplitudes W ( z )  and O(z): 

( D 2 - k 2 ) 2 W - ( 1 + A ~ ) P ~ - 1 ~ @ 2 - k Z ) W  =Rak2(1+M)@ (2.16) 

(D2 - k Z  -a)@+ W = 0 (2.17) 

and 

W(-i)  = DW(-I 2)- - @(-I) 2 - - 0 
W ( i )  = D2W(i) -+ Mak2(1 +Ao)O(i) =DO($) = 0 

(2.18) 

(2.19) 

where k = k: + kZ Note that for ur = o = 0 (exchange of stability), the set (2.16-19) is 
independent of the relaxation time A. 

$. 
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3. The numerical procedure 

The system (2.16-17) and boundary conditions (2.18-19) can be written in the standard 
form of a firs-order set of six linear and homogeneous differential equations: 
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Dx = AX (3.1) 

with linear and homogeneous boundary conditions 

Bx(-f) + Cx(i) = 0 (3.2) 

(3.3) 

In (3.1-2) the following notation is used: 

x r  = [IV, D W ,  D’W, D3W, Q. DO] 
0 1 0 0 0 r 0 0 1 0 0 

0 1 0 0 0 0  
0 0 0 0 1 0  
0 0 0 0 0 0  B =  

0 0 0 1 0 

0 0 0 0 
0 0 0 k2 + U 

-k’(k’+Pr-]u@) 0 2 k ’ t o g  0 k*Ra+Pr-’u@ 0 

rI 0 0 0 0 01 r o o 0 0  o 01 
0 0 0 0  0 0 
0 0 0 0  0 0 
1 0 0 0  0 0 C =  

0 0 1 0 k’Ma@ 0 
0 1 0 0  0 1 1 0 0 0 0 0 0  

0 0 0 0 0 0  

(3.4) 

(3.5) 

with @ = 1 + Ao. Note that the quantities A, B and C are independent of e. 
The solution of the set (3.1) may be formally written as 

x = exp(k)x(O). (3.6) 

[B exp(-A/2) + C exp(A/2)Jx (0) = 0. (3.7) 

det[Bexp(-A/2) + Cexp(A/2)] = 0. (3.8) 

f, (k, U ,  Ra, Pr, A) + Maf2(k, U, Ra, Pr, A) = 0 (3.9) 

Introducing this expression in the boundary conditions (3.2) yields 

Non-trivial solutions for (3.6) exist if the following relation is satisfied: 

This condition may also be viewed as a linear equation for the Marangoni number 

where f, and fi are complex functions depending on the whole set of parameters. The 
functions f, and fz become real for U = 0. 

Relation (3.9) is the complex eigenvalue equation which allows for the determination 
of the marginal stability threshold. 

The expression exp(-A/Z) is numerically evaluated by the series expansion 

exp(-A/2) -I+(-A/2)+(-A/2)‘/2! - t -..+(-A/2)”/n! (3.10) 

while exp(A/Z) is calculated by inverting exp(-A/2): exp(A/2) = [exp(-A/Z)]-’. 
Solutions of (3.9) are obtained from a Newton-Raphson algorithm for a (2 x 2) non- 

linear real system. The minimization of Ra or Ma with respect to k is also realized by 
a Newton-Raphson algorithm applied to the equation aRa/ak = 0 or aMa/ak = 0, with 
numerical evaluations of the first and second derivatives. The computations are performed 
on a 6000/550 RISK IBM station. 
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4. Results and discussion 

The loss of linear stability is characterized by the vanishing of ur. the real part of the 
stability parameter U .  When the frequency w is zero, the instability is stationary, otherwise 
it is oscillatory. In the case of a Newtonian fluid the principle of exchange of stability has 
been shown [28,29]. which means that the instability is always stationary. For a Maxwell 
fluid this principle no longer holds and the two kinds of instability must be examined. 

The description of the stationary instability is directly canied out since in this case 
equations (2.16)-(2.19) reduce to those of Nield [7] for a Newtonian fluid. 

New interesting phenomena are observed when oscillatory convection sets in. 
Typical marginal stability curves Ma(k) are given in figures 1 and 2. The full curve 

represents the stationary neutral curves (w = 0); it depends only on the Rayleigh number 
Ra, not on the Prandtl number Pr or on the viscoelastic relaxation time A. Broken curves 
describe overstability (w # 0) and are functions of Ra, Pr and A. The minima of the curves 
Ma(k) give the critical Marangoni numbers and the critical wave-numbers. 

Figure 1. Neutral curves Ma(k) 
and o ( k )  for PI = I and Ra = 0 
and for two values A = 0.1 and 
0.2 of the relaxation time. The 
hull (broken) curve corresponds to 
stationary (oscillatory) instnbiliry. 

Figure 1 shows the Marangoni number Ma and the frequency w of the oscillations 
versus the wave-number for Ra = 0, Pr = 1 and two values of the relaxation time A. The 
loops in the overstability curves describe mathematical solutions which are not important 
from a physical point of view since only the lower envelope is relevant for the appearance 
of convection. However it is interesting to notice that even if the Marangoni number is 
continuous along this lower envelope, this is no longer true for the frequency w .  This 
feature-and thus the presence of loops in the marginal curves-could be observed in 
experiments by imposing the value of the wave-number. 

Figure 2 reproduces the marginal stability curves for different values of the Prandtl and 
Rayleigh numbers. For clarity, the loops have been dropped and only the lower envelopes 
are plotted. The presence of a second marginal curve with negative concavity for Pr = 25 
and Ra = 580.4 will be interpreted below. 

The complete results for the Bhard-Marangoni problem with Pr = 1 are presented in 
figures 3 and 4. The curves expressing the critical Marangoni number Ma' versus the critical 
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bo 

Figure 2. Neutral oscillatory curves for A = 0.05. The 
results for Ra = 580.4 and Pr = 25 exhibit two distinct 
branches, one of them with a negtive concavity. 

Figure 3. Critical Mac-RaC curves for Pr = I ,  0.08 < 
A 6 0.5. 

.I". ...._...._.__.. .'. 1.0.2 
Figure 4. Critical wave-numbers and 
critical frequencies at Pr = I far various 
A values. n e s e  results correspond to the 
curves presented in figure 3; k curves are 

0 zw dw IW 800 io00 i zoo represented by full curves, bJ curves by 

8 ..!/:.. , , , , , ~, - , " ,  j 
...... ,...)..as 

3 

Re= broken C U N ~ S .  

Rayleigh number Rae corresponding to different values of the relaxation time b are given 
in figure 3. The broken curves generalize Nield's result [7] obtained for a Newtonian fluid 
and represented by the solid line. According to Nield, the critical Marangoni and Rayleigh 
numbers for stationary instability in a Newtonian fluid are located on an approximate straight 
line given by 

RaC/RaC, + Mac/M4 1 

where RG and M 4  are the critical values of Ra and Ma corresponding to absence of 
surface-tension effects and absence of gravity respectively. 

It is instructive to represent on this graph the evolution of the physical control parameter, 
namely the temperature difference A T  between the lower and upper surfaces. According 
to the very definitions of the Marangoni and Rayleigh numbers, one has 
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Ma = [(aE/aT)/orgd*]Ra 
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from which it follows that for a given fluid and a given layer depth d the Ma and Ra values 
are aligned on a straight line passing through the origin. For a given fluid, the slope of this 
line is representative of the thickness of the layer: the line OA corresponds to a ‘thick‘ layer 
(large d and R&a values), OB to a ‘thin’ layer (small d and Ra/Ma values). When AT 
is increased, one moves along the straight line, say OA, up to crossing the ‘Nield’s curves’ 
describing the onset of convection: the crossing point A gives the critical ATe value. In 
this picture, it is seen that when the relaxation time A is increased, the system becomes more 
and more unstable. For A smaller (larger) than some critical value, instability is stationary 
(oscillatory); for rather small A, instability is stationary as for Newtonian fluids. 

Consider in piuticular the curve corresponding to A = 0.125. For that portion of broken 
curve lying below Nield‘s full curve (say point A), it must be understood that for the 
corresponding values of Ra, Ma, Pr and A the instability occurs in the form of oscillations. 
In contrast, if the broken curve lies above the full curve, the instability is stationary. The 
situations described by the portion of the curve located above the full curve CD may 
however be interesting in experiments with imposed wave-numbers. The crossing of the 
broken curve and the solid curve (points C and D) describes an instability taking the form 
of a competition between a stationary mode and an oscillatory mode and is referred to 
as a point of codimension two. This situation has also been encountered in Newtonian 
fluids with a deformable upper surface [30]. Let us also notice that the curvature of the 
broken curves indicates that the coupling between the gravity and thermocapillarity effects 
is no longer quasi-linear as in stationary convection. The critical wave-number k: and the 
critical frequency OJ; (indices o and c stand for ‘oscillatory’ and ‘critical’ respectively) for 
the oscillatory instabilities are represented in figure 4 as functions of the critical Rayleigh 
number. Clearly, the critical wave-numbers and the critical frequencies decrease when the 
relaxation time grows. 

Figum 6. Critical wave-numbers and critical frequen- 
cies at Pr = 10 for various A values, These results 
correspond to the curyes presented in figure 5 .  

The situation for Pr = 10 is described in figures 5 and 6. The new feature is the 
appearance of a discontinuity in the slope of the broken curves (see figure 5). In connection 
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with these breaks, one observes discontinuities in the critical wavsnumbers and the critical 
frequencies (see figure 6). At these transition points, one has a competition between two 
oscillatory modes with different wave-numbers and frequencies. This competition is not 
typical of viscoelastic fluids but appears also in Newtonian fluids with a deformable surface 
[30]. The origin of this behaviour may be found in the fact that, by increasing Ra, the 
'height' of the different local minima of the neutral curve Ma&) are displaced with respect 
to each other so that the lowest minimum may jump from one critical kC to another. More 
precisely, as seen in figure 2, when Ra is increased from 0 to 580.4, the second local 
minimum which is the lowest one at Ra = 0 decreases more slowly than the first one. So 
for high Ra vaIues the first minimum becomes the lowest and thus determines the appearance 
of oscillatory convection. The break in the slope of the Nield curve occurs when the two 
minima have the same value. From an experimental point of view, it is interesting to notice 
that such discontinuities can easily be observed by using fluid layers of different thicknesses. 
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If the F'randtl number becomes larger, the number of discontinuities in the Rae-MaC 
and Rac-k; planes increases (see figure 7 for Pr = 35). Another interesting result observed 
for rather large values of Pr is the appearance of a region BDE where the critical Rayleigh 
number is quasi-independent of the critical Marangoni number. A detailed examination of 
the results even shows that for rather small Ma, the slope of the Ma versus Ra curve between 
points B and D becomes positive. This means that in this range of values of the parameters, 
the Marangoni effect-which is usually thought of as destabilizing-reinforces the stability 
of the liquid layer. Generally, for a fixed value of Ra (c RaB), the system becomes unstable 
when Ma reaches a given value. For RaB < Ra < RaD, the system is stable for Marangoni 
numbers between a mimimum and a maximum value. Of course, due to the extremely 
steep slope of the stability curve, the stabilization effect is practically very weak. Going 
back to the representation of the marginal curves of figure 2, this effect is detected by the 
appearance of a second branch with negative concavity. The positive slope of the stability 
curve Ma versus Ra corresponds to the (positive) maxima of this second branch. A similar 
unusual result has also been displayed in a paper 1311 by Davis and Homy who showed 
that surface deflection-which is usually thought of as destabilizing-may also increase the 
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stability for a predominantly buoyancy-driven convection. 
For high Pr values and pure Marangoni convection, we have observed that the various 

local minima of the neutral curves are very close to each other so that the corresponding 
modes are actually in competition. 

5. Summary and final comments 

We briefly summarize the main results which were obtained in terms of their dependence 
with respect to the various parameters. 

We first recall that stationary instability curves Ma(k) depend only on the Rayleigh 
number and not on Pr or A. In contrast, the overstability neutral curves are functions of the 
three parameters Ra, Pr and A. 

By increasing the relaxation time A, the system becomes more and more unstable 
while the critical wave-number and the critical frequency decrease. It is also interesting to 
notice that for values of A lower (greater) than some critical value, the instability is always 
stationary (oscillatory), whatever the value of the thickness (i.e. whatever the ratio Ra/Ma). 
For very small relaxation times, one recovers the results corresponding to a Newtonian fluid, 
as expected. 

When Pr becomes greater and greater, the system becomes more and more unstable since 
the critical Marangoni and Rayleigh numbers decrease. Moreover, the lowest minimum of 
the neutral curves is displaced towards local minima located more on the right of the 
picture, at least for small Rayleigh numbers, which means an increase of the critical wave 
number. The critical frequency also grows with Pr. The increase of the Rayleigh number 
is generally accompanied by a decrease of the critical Marangoni number from which it 
follows that the Marangoni effect plays a destabilizing role. However, this behaviour is 
not always true in viscoelastic fluids where, as observed in figure 7, the Marangoni effect 
may reinforce stability in some range of variations of the various parameters. Moreover, 
at high Prandtl numbers, one has observed discontinuities in the critical wave-number and 
the critical frequency. These discontinuities are due to the fact that, when Ra is increased, 
the local minima of the neutral curves Ma(k) corresponding to high k values decrease more 
slowly than those corresponding to small k. As a consequence, the lowest minimum jumps 
from right to left towards smaller k values and the critical wave-number generally decreases 
with increasing Ra. In particular, for purely gravity driven convection (Ma = O), it was 
found that criticality corresponds always to the first local minimum of Ma&). 

In summary, the objective of the present work was to examine the BCnard-Marangoni 
instability in a thin Maxwell viscoelastic fluid layer. A linear analysis was carried out. The 
results have been interpreted in terms of the two relevant parameters, namely the Prandtl 
number Pr and the relaxation time h appearing in the Maxwell equation. The present study 
completes earlier works [21-271 where one single motor of instability4ither gravity or 
thermocapillarity-was considered. 

Such an instability analysis is also interesting as it allows us, after measuring the critical 
temperature difference, to determine indirectly the rheological coefficients of the fluid, such 
as viscosity, heat conductivity and relaxation time, and to compare the values with the 
results of direct experimental measurements techniques which generally require a higher 
degree of refinement. 

As observed by other authors, one important feature of thermoconvection in a 
viscoelastic fluid is the appearance of an oscillatory instability. As shown by Getachew 
and Rosenblat [26], this kind of oscillatory instability can be exhibited experimentally in 



very thin layers in a microgravity environment. The present work provides the theoretical 
framework for studying thermocapillary instabilities in earth laboratories. Experimental 
confirmations would be desirable. 
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